Skip to main content Skip to secondary navigation


Main content start
CS 131

Computer Vision: Foundations and Applications

Computer Vision technologies are transforming automotive, healthcare, manufacturing, agriculture and many other sections. Today, household robots can navigate spaces and perform duties, search engines can index billions of images and videos, algorithms can diagnose medical images for diseases, and smart cars can see and drive safely. Lying in the heart of these modern AI applications are computer vision technologies that can perceive, understand, and reconstruct the complex visual world. This course is designed for students who are interested in learning about the fundamental principles and important applications of Computer Vision. This course will introduce a number of fundamental concepts in image processing and expose students to a number of real-world applications. It will guide students through a series of projects to implement cutting-edge algorithms. 

CS 231A

Computer Vision: From 3D Reconstruction to Recognition

An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection and human motion categorization.







AA 273

State Estimation and Filtering for Robotic Perception

Kalman filtering, recursive Bayesian filtering, and nonlinear filter architectures including the extended Kalman filter, particle filter, and unscented Kalman filter. Observer-based state estimation for linear and non-linear systems. Examples from aerospace, including state estimation for fixed-wing aircraft, rotorcraft, spacecraft, and planetary rovers, with applications to control, navigation, and autonomy.



CS 468

Topics in Geometric Algorithms: Non-Euclidean Methods in Machine Learning

Contents of this course vary with each offering. Past offerings have included geometric matching, surface reconstruction, collision detection, computational topology., differential geometry for computer scientists, computational symmetry and regularity, and data-driven shape analysis. The 2020-21 offering will be on Non-Euclidean Methods in Machine Learning.


CS 231N

Convolutional Neural Networks for Visual Recognition

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

AA 289

Robotics and Autonomous Systems Seminar (CS 529)

Seminar talks by researchers and industry professionals on topics related to modern robotics and autonomous systems. Broadly, talks will cover robotic design, perception and navigation, planning and control, and learning for complex robotic systems. May be repeated for credit.